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COUPLED QUADRUPOLE AND MONOPOLE
VIBRATIONS OF LARGE AMPLITUDE

E.B.Balbutsev, 1.V.Molodtsova, P.Schuck*

The set of nonlinear dynamical equations for quadrupole and monopole moments of nuclei
is derived from the equation for Wigner function f (r, p, 1) with the help of the method of
Wigner function moments. These equations are solved numerically for 2%pp,. The giant

quadrupole and monopole resonances are reproduced very well. The corresponding
multiphonon states are predicted.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

Ces3anHbIe KBaApYNOIbHBIE H MOHONIO/IBHEIE
KoeGanus GoIbIIOH aMILIHTYXBI

E.B.Banvbyyes, H.B.Monodyosa, 1.y

M3 ypasuenns na dynxunn Burnepa f (r, p, ¢) ¢ nomMowsio MeToga MoMenTOB byHKuMu
Burnepa BhiBeneHa cucreMma HeTMHeitHbIX AHHAMHMYECKHX YPABHEHHH JUI KBAaAPYNOIBHOIO M

MOHOTO/ILHOTO MOMEHTOB Apa. [ToNyueHH e ypaBHEHHS pellleHbt YHCTCHHO s 208py, Xopo-
LIO BOCHPOM3IBOAATCH GHEPTUH TMIAHTCKMX KBaAPYNONBHOTO H MOHOMONBHOIO PE€30HaHCOB.
Ipepckasantl coorsetcTByiomue MYIBTHQOHOHHbIE PE3OHAHCHI.

Pabora srinonuena s laGopatopuu TeopeTHieckoi $usukn uM. H.H.Boromo6osa OUSH.

1. Introduction

Large amplitude motion is very interesting and complicated field of nuclear physics.
There are not so much methods and models treating this problem ([11, [2], [3] and refer-
ences therein), so every new result here is valuable.

In this paper we use the method of Wigner function moments in the frame of TDHF
theory with the simple Hamiltonian to derive the set of nonlinear dynamical equations for
the quadrupole and monopole moments of nucleus. This model is attractive, because it
allows one to write exact equations, which can be solved exactly. And what is more, it can
be generalized to become rather realistic.

*ISN, Grenoble, France
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2. Equations of motion

2.1. Description of the Model. Our model is based on the equation for a one-body
density matrix p = p(r;, I, f) in the TDHF theory:

®_ 55 )

We transform it into the equation for Wigner function [4]
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where upper index of nabla shows the function which this operator acts on, Hy is the

Wigner transform of the Hamiltonian:
= [ eP¥hp S s
H“[r, p)-je (r+2lH1r—2)ds.

If the Hamiltonian is the sum of the kinetic energy and the local potential V(r), its Wigner
2
transform is just the classical version of the same Hamiltonian: H,, = £y V(r). Then

2m
equation (2) becomes:
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Our model potential is the harmonic oscillator with the quadrupole-quadrupole residual
interaction:  V(r, f) = -m(x)2r2 +Aq(NQ(r), where Q(r)=x>+x)— 23, q(t)=1trQp =

= J’ drdpQ(r)f (r, p, 1). Only the first term of the sin-operator survives in this case and we
have:
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with

22 = [me? + 2008, + 8, - 28,))x, - )
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2.2, Wigner Function Moments. Now we apply the method of Wigner function
moments [5] to derive the closed system of the dynamical equations for cartesian tensors of
a second rank. Integrating equation (4) over the phase space {r,p} with the weights

x,xj , p,.xj , pipj we get:
o(n(r, tu (r, 1))
Jrp O e [, TR0 ©)
7j ot i axs

3 v . 1. 3
m jxj 2 (n(r, ugr, D)dr + [ n(r, 0, & dr o+~ | ¥y A, nd=0, ()

d aV 114 _
Sla, @ nde+m a0 [ui(r, ) 2 J“dr s 2 Ay @ D=0, ®)
ij
where [‘"]ij means that the quantity into brackets is symmetrized with respect to idexes i

and j([aibj]l.j = aibj + a]bl.) and the summation over repeated indexes is assumed. Here we

have introduced the notations: n(r, ) = J Ax, p, tydp, mn(r, t)ui(r, f = J pﬂr, p, t)dp,
Au'.- Ann= _'. pipj...pkf(r, P, )dp. By definition n(r, ¢) is the nucleon density, u(r, ¢) is the
mean velocity of nucleons, Aij(r, 1)/2m is the kinetic energy tensor (or pressure tensor).
Integrating by parts the last terms in (6)—(8) and introducing the notations Jij(t) =
= xlx]n(r, dr for an inertia tensor and Hij(t) = f Ai}.(r, f)dr for an integral kinetic energy
tensor we have:

5;11.].(:) =1 xnte, ougr, Hdr], =0, ©)
d v 1
m = [ 5 nte, ou, nar + [ xnte, 3, 4 0 =0 (10)
d v
SI@+m[n,n [1e. a ]ijdr =0, (1

The last integral of the equation (8) with the third rank tensor As,.j has disappeared due
to the evident boundary condition Asij(r, 1) > 0 at r — o, which follows from the bound-

ary condition for the Wigner function Ar,p, ) 5 0atr — . As aresult we are left with
the closed system of equations for second rank tensors.

The equations (9) and (11) are evidently symmetrical with respect to indexes i, j and
the equation (10) has not the definite symmetry. We can construct easily the symmetrical
and antisymmetrical equations by combinations of the equation (10) with different indexes:

d v 2 _
m | Xn(e, Ou(x, dr], + [ | xn(, 1) o, dr] = =T = 0, (12)



42 Balbutsev E.B. et al. Coupled Quadrupole and Monopole

d av. oV
me [ n(r, Dixur, ) - xufr, O)dr = - | ner, Dlx, o
The integral on the left-hand side of the equation (13) is the angu]ar momentum of the
nucleus. When V(r, 1) is a self-consistent potential, the right-hand side of this equation is
equal to zero and the equation expresses the angular momentum conservation law. For our
model potential

}dr. (13)

oV
S a— = Dg)xx(8,, = 8, + 8, = 8 = 28, + 25,
H

This expression is different from zero for j =3, i=1,20ri=3,j=1,2 and proportional

to X, X3 OF XXs. The corresponding integral In(r Dx, x,dr is equal to zero, because our

potential does not destroy the triplanar symmetry of the nucleon distribution n(r, f).
Therefore our model conserves the angular momentum.

The non-trivial information is contained in the symmetrical equation (12). We
transform it using the equation (9) and the expression (5) for the potential derivative:

& , 2
m E J‘.j(t) + 2.1‘.].(1) {ma)2+ Aq(t) (8‘.1+ 8j1+ 8i2+ 8j2— 28‘.3— 28j3)} - Hij(t) =0, (14)
By definition ¢(f) = J“(t) + .122(1) - 2J33(t), hence this equation is nonlinear in Jij . As is

seen from its structure we can write the set of coupled dynamical equations for the tensors
Jy + Iy, and Jyg

m + Jp) + 20, + Jy) {m@ + 2MJ +J

2
= Hh -, @ + 1

22) =0, (15)

miyy + 2y (me® = 4h () + 0y = 2y} = =T =0, (16)

where dot means the time derivative and we don’t write out the time dependence of tensors
for simplicity. To be closed, this system must be supplemented with the dynamical
equations for the tensors Il, +IL,, and H33. They are easily obtained from the equation

(11):
% 0+ 2m{m(,o2 + 2Aq(1) (8“ + 8:’2 - 28‘.3)} jn(r, Nur, t)xidr =0. (17)

Using here equation (9) we have:

(@, + TL,) + m(J, | +J,,) {me? + 200, + J,, = 230} =0, (18)

T, + mly, {mo? — 4|, + Jpy = 203} = 0. (19)

As one sees from the structure of the equations (15)-(19), it will be more convenient to
rewrite them in terms of new variables: the component of the quadrupole moment
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Q5= i+~ 2J,,, the mean square radius Qo = Ji Jpy + J3; and the irreducible
3

tensors I1,, = I, + IL,, - 2I1,, and Iy, = E I1_.Taking the simple combinations of the
s=1

equations (15), (16) and (18), (19) we get finally:
m*Qgy + 2m76 Qg + 4mhQ2 - 211 = 0,
m'Qyy + 2m76 0y + 4mAQ, (20, - O,) - 20, =0,
fIOO + mzszoo + 2m7.,Q20Q20 =0,
My, + M7, + 2mAQ, (20, — O,) = 0. (20)

Third equation of this system gives the integral of motion:

I'IO0 + m2(02Q00 + m?ngo = const. @n

3. Analysis of the Equations of Motion

3.1. Stationary Solution. Investigating the stationary solution of the system (20) we can
do some conclusion about the equilibrium shape of nuclei. By definition the variables of
the stationary solution (or equilibrium state) don’t depend on the time. Supposing the time
derivatives in (20) equal to zero one gets two relations

mw’Qy, + 2mAQ2 ~ Iy, =0,
m’Q,, + 2mA0,(200 = Qy) ~ T = 0. (22)
We shall call them equations of equilibﬁum. The second relation is of a special importrance
— it says that it is impossible to have a static quadrupole deformation (Q20 # 0) without a
Fermi surface deformation (H20 # 0) and vice versa [6]. Formally one can find non-trivial
solution for on having H20 =0:

2
mo
Q20 =200+ 5 - (23)
However it turns out, that for the self-consistent force constant [1, 71
2
—mQ)
A= = (24)
Mot 44 <>

the expression (23) is equal to zero (we remind that QoO =A <r2>).
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3.2. Small Amplitude Approximation. Let us consider the system (20) in the small
amplitude approximation. Taking the variations Q,.(f)= Qm(O) + 8Qm(t), I, =

= I'Im(O) + snm(:) and neglecting the terms quadratic in §, one obtains two independent

systems: the system for quadrupole tensors,

m?80,, + 2m6? + 8mAQ (0)) 80y, — 28T, = 0,

8L, + m*w’8Q,, =0, (25)

and the system for monopole tensors,

m28Q,, + 2m*w?8Qy, — 28Tl = 0,
81y, + m*w’8Q, = 0. (26)
We consider the spherical nuclei in this paper, so we put everywhere Q,(0) = 0. Supposing
the time dependence ¢’¥ for all variables one can find easily the next eigenfrequencies:
Q=20 2n

for the monopole vibrations and
= \/ PR
Q,=2 V" + - Q0o ©® (28)

for the quadrupole vibrations. Using in (28) the expression (24) for the force constant one
obtains the well-known [1, 7] result for the quadrupole eigenfrequency

Q,=V20. (29)
The energies E) = hQ, and E, = hQ, are in qualitative agreement with experimental values

of the energies of the monopole and quadrupole giant resonances (for ho = 41473 Mev).

So, in the small amplitude approximation our model gives only two levels, which can
be interpreted as giant 0" and 27 resonances. This is true also for the calculations with
realistic interactions [8].

3.3. Numerical Solution and Fourier Analysis. Principally another situation is observed
in general case, when the system (20) is solved without any approximations. We solve it
numerically with the help of Runge-Kutta procedure. The solutions depend strongly on the
initial conditions (i.c.).

They can be chosen in two ways. In the first case one takes the equilibrium values (i.e.
satisfying egs. (22)) for the moments on(o)’ Hm(O) and some definite (nonzero) values

for their derivatives Qm(O), Hm(O). From the physical point of view that means that one

pushes the nucleus and forces it to deviate from the state of equilibrium. In another case
one takes some nonequilibrium values for Qw(O), HM(O) and zero values for their

derivatives. In such a way one deviates the nucleus from the equilibrium «by hand» and it
begins to vibrate due to the restoring force.
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It is evident, that both variants are equivalent: for any set of the initial values of
Qm(O), on(o)’ on(o)’ l'Im(O) from the first variant one can always find the

corresponding set in the second variant to get the equivalent final results.
In this paper the first variant is used. We take on(o) = I'IZO(O) = 0 because we deal

with spherical nuclei. The evident approximation is used for the monopole momentum:
QOO(O) = % RZOA, where R0 =1.184"3. The initial value I'IOO(O) is fixed by the first equation
of the system (22). The initial values for the time derivatives Q,(0) and 0,,(0) are

arbitrary. We have performed the calculations for two values of the force constant A and for
six sets of 0 (0), 25(0): 1) 6100, 10000, 2) 5000, 15000, 3) 5000, 18000, 4) 6100, 10,

5) 10, 10000, 6) 10, 10 (all the values are in MeV - fmz). The time-dependence of the
function on(t) for the first variant of i.c. with A = XBohr is demonstrated by the figure. As

one can see, it oscillates quite irregularly. The maximal period of oscillations, when the
curve begins to repeat itself, is T, = 4574 Mev~! (t=1t/h). The pictures for other

functions and other variants of i.c. are more or less similar, Having the periods of
oscillation one can perform the Fourier analysis of the curves and represent all the functions
by series

a
fi) = ?O + 2 (a,. cos , t + bl. sin o, 1.

i

1000;
500-5
Qz0 o

-5007

-1000]

-15003
)

Fig. The time-dependence (1 =1/ h) of the quadrupole moment for A=Ay, and the initial
conditions 0g(0) = 6100, 0,(0) = 10*
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Table 1. Fourier coefficients and energias for Qoo(()) = 6100, on(O) = 10*

i ha, , MeV 0y
b; 4 b 4

0 0.00 0.000 69.547 0.000 -346.892
1 1.14 3Q-2M -2.729 -0.735 9.464 2.550
2 1.90 5M-7Q 0.000 0.000 0.003 0.004
3 228 6Q-4M 0.006 . -0.010 -0.038 0.065
4 3.04 3IM-4Q -0.086 0.035 0.407 -0.167
5 342 9Q-6M 0.000 0.000 -0.001 -0.002
6 4.18 M-Q -0.641 -5.152 26.682 213.580
7 532 2Q-M 16.475 2312 -46.538 -6.508
8 ' 6.07 6M-8Q° 0.000 0.000 0.001 0.001
9 6.46 5Q-3M -0.005 0.012 0.015 -0.035
10 721 4M-5Q 0.029 -0.016 -0.172 0.097
1 835 2M-2Q 0.818 3.234 -8.459 -33.331
12 9.49 Q -37.702 -0.585 1008.723 14.817
13 10.63 4Q-2M 0.342 -1.194 0.865 -3.034
14 11.39 5M-6Q 0.001 0.001 -0.029 0.021
15 1177 7Q-4M 0.008 0.005 0.014 0.008
16 12.53 3M-3Q -0.703 -1.803 -0.983 -2512
17 13.67 M 461.418 -50.204 53.062 -5.838
18 14.81 3Q-M 2.606 -16.684 -0.640 4.139
19 15.95 6Q-3M -0.020 -0.008 0.014 0.006
20 16.70 4M-4Q -0.006 -0.011 0.029 0.053
21 17.84 2M-Q 1.833 -0.433 -7.259 1.729
22 18.98 2Q -1.073 34.542 0.703 -23.925
23 20.12 5Q-2M 0.179 0.054 -0.128 -0.038
24 2202 3IM-2Q 0.238 -0.088 0.347 -0.130
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i ho, , MeV Qo O
b, a; b; a;
25 23.16 Q+M 0.199 2.142 1.069 11.233
26 24.30 4Q-M -0.140 -0.024 0.628 0.107
27 2544 7Q-3M 0.000 0.000 0.001 -0.002
28 26.20 4M-3Q -0.005 0.002 0.029 -0.015
29 27.34 2M -0.041 -0.187 0.145 0.651
30 28.48 3Q 0453 0.021 -1.055 -0.046
31 29.62 6Q-2M 0.001 -0.004 -0.003 0.009
32 31.51 3M-Q 0.001 +0.002 0012 -0.035
33 32.65 2Q+M -0.130 0.010 0.191 ‘ -0.015
34 33.79 5Q-M -0.001 0.009 0.003 -0.017
35 36.83 2M+Q -0.015 0.000 -0.025 0.005
36 37.97 4Q 0.001 0.000 -0.002 0.027
37 41.00 M 0.001 0.000 -0.003 0.001
Table 2. Fourier coefficients and energies for Qoo(o) = 5000, on(O) = 15000
i hn)‘. , MeV QOO on
b, a, b, a
0 0.000 0.000 159.3703 0.0000 -629.2916
1 0.632 T™-10Q -0.0016 -0.0003 0.0095 0.0026
2 1.155 3Q-2M -6.2262 —6.8901 26.2050 29.0060
3 1.787 5SM-7Q -0.0027 0.0012 0.1114 -0.0543
4 2310 6Q-4M 0.0315 0.0031 -0.5563 -0.0557
5 2,942 3M-4Q -0.1478 0.3773 -0.1133 0.2919
6 3.466 9Q-6M 0.0043 -0.0034 -0.0185 0.0163
7 4.097 M-Q -4.8411 -12.7965 108.3201 286.6512
é 4,621 12Q-8M -0.0003 0.0003 -0.0001 -0.0034
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i hw, , MeV Qoo @y
b; 4a; b; 4;

9 5.253 2Q-M 32.5877 16.7307 ~-81.0800 -41.6762
10 5.884 6M-8Q -0.0018 0.0025 -0.0098 0.0084
H 6.408 5Q-3M 0.3342 -0.0889 -1.0585 0.2804
12 7.040 4M-5Q 0.0040 -0.3266 -0.0159 1.2394
13 7.563 8Q-5M -0.0116 0.0185 0.0522 -0.0833
14 8.195 2M-2Q 7.9911 9.0500 -56.5284 -64.1159
15 8.827 IM-12Q 0.0006 -0.0001 -0.0027 0.0020
16 9.350 Q -96.8501 -10.9563 1496.3934 170.5650
17 9.982 TM-9Q —-0.0001 -0.0011 -0.0107 0.0273
18 10.505 4Q-2M 5.0277 -3.6061 18.3302 -13.1196
19 11.137 SM-6Q -0.0197 -0.0539 0.0514 0.1395
20 11.660 7Q-4M 0.0037 ~0.0177 -0.0295 0.1365
21 12.292 3M-3Q -3.6049 -1.9033 -8.5572 —4.5308
22 12.815 10Q-6M 0.0111 0.0193 0.0057 0.0081
23 12.924 10M-13Q -0.0004 0.0006 0.0008 0.0002
24 13.447 M 399.0070 -101.4652 102.3071 -25.8836
25 13.970 13Q-8M 0.0020 0.0014 -0.0008 0.0001
26 14.079 8M-10Q -0.0006 -0.0044 -0.0005 0.0005
27 14.602 3Q-M 31.9651 —48.0564 -5.7075 8.5558
28 15.234 6M-7Q 0.0095 0.0097 0.0014 0.0020
29 15.757 6Q-3M -0.1036 -0.6973 0.0584 0.3970
30 16.389 4M—-4Q -0.2989 -0.0378 0.2749 0.0349
31 16913 9Q-5M 0.0110 0.0084 -0.0079 -0.0062
32 17.545 2M-Q 7.1178 -4.9824 11.3260 7.9007
33 18.700 2Q -18.0739 78.8608 12.3700 -53.5567
34 19.332 ™-8Q -0.0015 -0.0001 0.0006 0.0003
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i ho, , MeV O
b; a; b; 4
35 19.855 5Q-2M 0.9875 1.7677 -0.6990 -1.2564
36 20.487 SM-5Q -0.0634 0.0156 0.0196 -0.0047
37 21.010 8Q4M 0.0044 0.0016 —0.0024 ~0.0008
38 21.642 3M-2Q 0.6798 -0.9969 0.2118 -0.3093
39 22.165 11Q-6M -0.0008 0.0004 —0.0001 0.0001
40 22797 Q+M 0.8979 6.5434 1.6030 11.8635
41 23952 4Q-M -0.3578 -0.3010 2.4021 2.0305
42 24.584 6M-6Q -0.0010 0.0007 -0.0020 0.0013
43 25.107 7Q-3M -0.0283 0.0010 0.0851 -0.0028
44 25.739 4M-3Q -0.0036 0.0150 0.0306 -0.1253
45 . 26.894 2M -0.2367 -0.4352 0.7693 1.4230
Table 3. Fourier coefficients and energies for QOO(O) = SOOO,QZO(O) = 18000
i ho, , MeV 1%
b, a; b; 4a;

0 0.000 0.000 248.004 0.000 -966.077
1 0.283 9IM-13Q -0.010 0.005 0.061 -0.033
2 0.952 3Q-2M -8.682 -21.535 42.528 105.465
3 1.236 T™-10Q 0.001 0.000 0.084 —0.124
4 1.905 6Q—4M -0.553 ~-0.574 0.865 0.897
5 2.189 SM-7Q -0.062 0.229 0.310 -1.147
6 2.858 9Q-6M 0.116 0.052 -0.788 -0.357
7 3.141 3M-4Q 0.045 0.389 1.234 10.593
8 3.811 12Q-8M 0.010 0.001 —0.061 -0.015
9 4.094 M-Q -12.323 -22.605 183.778 336.847
10 4378 10M-14Q -0.000 0.002 0.025 -0.020
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i ho, , MeV Q0 Qs
b; a; b; 4;

11 4.764 15Q-10M -0.001 0.002 0.014 -0.002
12 5.047 20-M 43.929 36.141 -87.113 -71.611
13 5.330 8M-11Q -0.003 0.007 0.005 0.000
14 5717 18Q-12M -0.000 -0.001 0.001 0.003
15 6.000 5Q-3M 4.043 1.273 -14.550 -4.574
16 6.283 6M-8Q -0.024 -0.100 0.162 0.671
17 6.953 8Q-5M -0.201 0.015 1.112 —0;084
18 7.236 4M-5Q -1.187 -1.679 3.013 4.258
19 7.906 11Q-T™ -0.032 0.012 0.132 -0.048
20 8.189 2M-2Q 33.679 21.708 -190.830 -122.828
21 8.472 1IM-15Q 0.001 -0.001 -0.017 0.017
22 8.859 14Q-9M -0.014 0.014 0.033 -0.058

© 23 9.142 Q -170.626 -32.693 1783.589 340.434
24 9.425 IM-12Q 0.000 -0.007 0.021 0.031
25 10.095 4Q-2M 13.165 -2.585 102.969 -20.304
26 10.378 T™-9Q —0.033 -0.037 0.257 0.294
27 11.048 7Q-4M 1.595 -1.038 2.371 -1.547
28 11.331 SM-6Q -0.579 -0.284 -1.120 -0.547
29 12.000 10Q-6M -0.112 0.161 -0.197 | 0.284
30 12.284 3IM-3Q -7.164 -0.526 -24.352 -1.766
31 12.953 13Q-8M -0.024 0.090 -0.015 0.033
32 13.237 M 361.277 -115.654 154.458 -49.621
33 13.520 10M-13Q -0.032 -0.039 -0.002 -0.009
34 14.189 3-M 112.204 -93.180 ~3.016 2511
35 14.473 8M-10Q -0.003 0.006 0.007 +0.002
36 15.142 6Q-3M 4.595 -8.523 -1.928 3.586
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i hw, , MeV Ouo 9
b; a; b, 4;
37 15.426 6M-7Q 0.216 -0.006 0.034 -0.002
38 16.095 9Q-SM 0.005 -0.057 -0.004 0.047
39 16.378 4M—4Q -3.315 1.504 1.591 -0.724
40 17.331 2M-Q 23410 —24.538 ~21.116 22.195
41 18.001 15Q-9M 0.006 0.014 -0.006 -0.005
42 18.284 2Q —46.772 117.573 30.189 -76.202
43 19.237 5Q-2M 0.056 12,158 -0.052 -8.678
44 19.520 TM-8Q -0.054 0.031 0.024 -0.014
45 20.190 8Q4M 0.237 0.580 -0.167 -0.407

The results of such calculations are demonstrated in Tables 1, 2, 3, where the
eigenfrequencies h®; and the corresponding coefficients a; and b, of the functions Q,, and

Qy are shown for three variants of i.c. and A = A‘Bohr‘ Let us analyse in detail the first table.
As one can see there are about 40 eigenfrequencies having the diapason of the amplitudes
a, b, from 1073 to 10°, the dozen of them having this diapason from 10° to 10°. All these
frequencies correspond to transitions between various levels Ev of the nucleus, i.e., they can
be represented as differences hmuv = Eu —-E, So, it is necessary to perform some
combinatorial analysis to find the eigenvalues E . Of course the energies of GQR and GMR

" can be recognized immediately without any combinatorics. They are very close to that of
calculated in the small amplitude approximation: E2(hu)12) became 9.49 MeV instead of

9.78 MeV and Eo(hml.,) became 13.67 MeV instead of 13.84 MeV. So, we confirmed the
well-known fact, that giant resonances are described very well in the small amplitude
approximation.

It is very interesting to discover the multiphonon states. One can find two- three- and
four-phonon states, corresponding to GQR. Their energies are ho,, =2 - E,=1898 MeV,

hw,, =3 - E, =2848 MeV and h(z)36 =4 E, =37.97 MeV. There are two- and three-
phonon states corresponding to GMR. Their energies are h(o29 =2. E) = 27.34 MeV and
ho,, =3 E, =41 MeV. There is one two-phonon state consisting of the quadrupole and
monopole phonons (its energy is hm25 =Ez+E0=23.16 MeV). There are two three-

phonon states consisting of: two quadrupole plus one monopole phonons
h(o33=2 . E2+E0=32.65 MeV and two monopole plus one quadrupole phonons

ho, =E, +2 - E) = 36.83 MeV.
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It is not so difficult to show, that all the rest h(x),. are just the differences of these (and

more high lying) multiphonon states. The results of the combinatorial analysis are shown
in the third columns of the tables.

. . 3 ..
The calculations with the A = 2 kBohr show that the results are rather sensitive to the

force constant. For example, the energies of GQR and GMR are increased by 1.2 MeV and
0.06 MeV, respectively, their strengths decreasing about 15%. The strengths of
multiphonon states are decreased about 2 times and more. The comparison of the results
of calculations with different i.c. shows that strengths of all the states are very sensitive to
i.c., what is evident. Not so evident is the noticeable dependence of energies on i.c. We
interpret it as the manifestation of the dynamical deformation of the nucleus. This
deformation is rather large and depends on i.c. Analysing tables 1-3 one can notice the next
rule: the more (the less) the initial values of Qoo or Q20 are chosen, the more (the less) the

resulting amplitudes are obtained and the more of new frequencies appear.
The limit of maximum possible amplitudes is achieved at Q,.,(0)= 20000. The
calculations show that the maximum positive value of Q,, is ~1980 and the maximum

negative value is ~2480. Which value of the deformation parameter B these amplitudes
correspond to? To answer this question we derive the formula for the B-dependence of
Q,, in the approximation of the sharp edge of a nucleus. By definition

n RO.0)
0,08 = ny(® [ dofsinede j o2 + 22 - 2 dr, (30)
0 .

n .
Here R(®, §) = Ry(1 + BY,(8.0)), X+ - 245 = -4\15 r’Y,(8.0) and the density n(B)
is defined as

-1

2n n R(6,9)
B =a1{fde[smnode [ FAar
0 0 0

Performing the simple but tedious calculations we get:

0,(B) = —4 \/_ PR { p+i3 g2 B’ +

7 4w l41t

+ 100 ,/ 3 4. 25 .53 s
77 (4n)? 77 - 13(4m)?

3 A 2, 23 g3
nO(B)—3R3{4n+3B +2 ZEB} . 31)

0
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With the help of these formulae we find, that the vibrations with the maximum
amplitude correspond to the change of B from ~0.29 to ~-0.29. So, the shape of the nucleus
changes during the vibrations from oblate to prolate. Further increasing of Q,(0) leads to

the instability: the amplitudes begin to grow infinitely. It is necessary to stress that due to
the lack of the full self-consistency of our Hamiltonian this value of maximum B must be
considered as the lower bound for Bmax. By the way, the amplitudes presented on the figure

correspond to B= 0.13.

The limit of small amplitudes is practically achieved for the sixth variant of i.c., where

only GQR and GMR have the noticeable amplitudes and their energies are equal exactly to
V2ho and 2ho. ’

3.4. Hydrodynamical Limit. There is one more interesting solution of the system (20).
It is the so-called «hydrodynamical limit». The Fermi liquid differs from the classic one by
the existence of the Fermi surface deformation. So, if to suppose IL,, = 0, the system (20)

(without the last equation) will describe pure hydrodynamics. Its solution in the small
amplitude approximation is very well known: E, =0, i.e., there is no GQR in the classic

hydrodynamics. However the exact solution gives the nonzero value: E, =0.28 MeV for
on(o) = 3, Qoo(o) =6100. This solution exists for initial conditions Q20(0) <35,
QOO(O) > 6000 and changes not very much in these limits. Including II2O gradually one can
observe the evolution of this solution. With this aim we multiplied IL,, in the third equation
of the system (20) by a constant factor o.. When o is changed gradually from 0 to 1, E,
grows gradually from 0.28 MeV at o = 0 to the usual value of the GQR energy at o = 1.

3.5. Excitations Probabilities. The excitations probabilities can be calculated with the
help of the classical formula for the intensity of the quadrupole radiation [9]:

1 =2
Int = > D2 (32)
5 b
180c° = Y

where DiJ. = eZ/A( 31”. - SI.J. z Jss} Due to the axial symmetry of the Hamiltonian
s
3

2
= = - o 2 32 _3(ezZ) »
Dy =Dy Dy3=-2D;; and D, =0 for i#j. Hence ZDiJ—2D33—2( AJQZO'
ij

Putting into (32) the Fourier expansion for Q,, and averaging over the greatest period of
oscillations we get:

) 2 2

— eZ 1 6 %™ ba -

Int=| = o) =) Int . 33
(A ]2 120c5§ * 2 % o

Dividing frﬁa by hu)a we obtain the radiation probability W,. Taking into account the
relation between W, and the reduced probability [10] we find:
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eZ¥ 5 2 .2 zAlzsai"bi
Ba<ﬂ>=(7]2?sz;<aa+bu>=[z]zmTBW’ .

where B, is Weisskopf unit.

Using here the values of a  and b from Table 1 we can calculate the B(E2)-factors for

GQR and multiphonon states:
B(E2, GQR) = 57.5B,

B(E2,2 xGQR) =6 - 107*B(E2, GQR) = 0.03B,, .

The excitation probability of the two-phonon GQR is approximately three orders of
magnitude less than that of the usual one-phonon GQR. The B(E2)-factor for the three-
phonon state is six orders of magnitude less than that of the GQR.

4. One-Dimensional Model

To reach more deep understanding of rather unusual properties of our model (the de-
pendence of eigenfrequences on initial conditions, the lack of an anharmonicity of a
spectrum in spute of an anharmonic potential) we will consider here exactly soluble one-
dimensional model of a harmonic oscillator with a monopole-monopole residual interaction.
Its solution was found by Reinhardt and Schulz [11] in a rather complicated way. With the
help of our method the solution becomes elementary.

The average field of the model (in the notations of [11]) is
1
Vi =5 maix = k(< x* > - D)E - 5/ 4), (35)

where in correspondence with our notations ®; =, < P>= J1,0, x(z) =J,,00).

Following the rules described in section 2.1 one can derive the system of equations

mJ + 2Jme? + 26 - J] - = T =0,
m

I+ milma’ + 2x(J = J)] = 0 (36)

with J =J, (1), J, = J,,(0), IT = I1,,. The second equation of this system gives the integral
of motion

I + m*w?J + mxJ* - 2mxJ J = const. 37
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The value of const can be fixed by the conditions of equilibrium. In the state of equilibrium
J= JO IT= HO and one has from (36) and (37):

2; 2o
Ho + m20)2]0 - mKJg = const. (38)
Combining these two equations one finds:

const = 2m’w’J2 ~ micJ?, (39)

Using (37), (39) and introducing new variable y = J — JO one reduces the system (36) to the
single equation

y+ay+ by’ =0, (40)
with a = 4( o’ + 5 Jy ), b=6 ﬁ This equation is integrated trivially to give
dY__2,3_ o2
[d,f T -t -c, (41)

where ¢, is a constant of integration, which is determined by initial conditions. Having in

mind, that y(0) = 0, one finds ¢ == ('y(O))2. The solution of the equation (41) can be
expressed in terms of the Jacobian elliptic function {12

YO =ny+(n, -n,) s’ @). 42)
I %
Here © = T 1((111 n3) XK= K 2’ 1, are the roots of the polynomial
[44
3a 361
Po) =y + 2% P+ (43)

The function sn(9) is a periodical one with a period Ap = 4K, K being the complete elliptic

integral of a first kind:
v 2
K= V_d%_ , (44)
] 1 -k"sin ¢

n —
where K = 112 3 Hence, the period of the function ¥(#) will be proportional to
173
At=ﬁ";)IS and the corresponding frequency will be proportional to Q -% = % This

expression demonstrates very well the dependence of eigenfrequencies on initial conditions,
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because it is evident that the roots of the polynomial (43) depend on ¢, which in its turn

depends on y(0). The absence of any anharmonicity can be understood studying the
trigonometrical expansion of the Jacobian function [13]:

_ —_2—1£ i n-1/2 . —M
snot = K z‘; —q———-—l - an_l sin 2n - 1) 2K t.
n=

Here ¢ =exp (-nK/K), K =Kk, k' = V1 - KB This expansion contains only

frequencies proportional to odd numbers of the basic frequency € = Em%z— It is evident, that

sn® will contain frequencies nQ with even n only. So, the Fourier expansion of the function
y(f) will contain only one basic frequency 2Q and its satellites 4Q, 6Q and so on. In the
case of our two-dimensional problem of a coupled dynamics of monopole and quadrupole
moments it is natural to expect the two basic frequencies Q, Q, and their satellites. Due
to coupling there must be a lot of linear combinations of these frequencies: n,Q; n,Q,.
As we have seen, such picture really takes place.

Let us compare our solution with that of Reinhardt and Schulz [11]. They have studied
the collective ‘variable r(r) which is connected with our variable y(f) by the relation

y= x(z)(r2 - 1) (formula (3.28) of {11]). Their dynamical equation for r(f) reads (formulae
(3.17), (3.29)):

. 0)2 2 —

F— 2+ @ + 2k(P - N] =0. (45)

r3

Multiplying (45) by r one easily transforms it into

22 2 4
r,.e ' txl_,2 =
2+2r2+m{2+x(2 r)]] 0, (46)

demonstrating the existence of the integral of motion

d

dt

;2+m2[—12-+;2+2(r2-1)2]=c2, @7)
r

which expresses the energy conservation. This integral allows one to prove the equivalence
of the equations (40) and (45). Really, putting y = x2(Z — 1) and ¥ = 2x2(¥ + 1) into (40)

and eliminating the term proportional to r* with the help of the relation (47) one gets:

. 1 —. 2 2 a b
rr—w{?+rz+x(r -1 }+cz+§(rz—1)+§x3(r2_1)2=0. (48)
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This equation becomes equivalent to equation (45) if to take C, = 2w%. With such value of
¢, our integral of motion (47) will coincide with that of Reinhardt and Schulz only in the
case when Er= E0 (formula (3.30)). By the way, this requirement follows naturally from
their condition of self-consistence (see the bottom of section 3.2 in their paper [11]).

5. Conclusion

Let us enumerate the main results of this paper. The set of nonlinear dynamical
equations for quadrupole Q,, and monopole Qyo moments of nuclei is derived from the

TDHF equation with the help of the method of Wigner function moments. Due to the
simplicity of the used Hamiltonian all the derivations are performed exactly, without any

approximations. These equations are solved numerically for 28pp 1t is found, that the
functions Q,,(») and Qp(® oscillate irregularly. Their Fourier analysis yields a lot of

eigenfrequencies, which correspond to various differences of the energy levels.
Combinatorial analysis allows one to find the giant quadrupole and monopole resonances
and several multiphonon states constructed of these two resonances. It is shown that the
reduced probability of the excitation of the two-phonon giant quadrupole resonance is three
orders of magnitude less than that of the one-phonon GQR. .

The theory can be modified to take into account spin degrees of freedom. In this case
it will be possible to study a large amplitude motion with the rather realistic Nilsson

potential. The extension to the description of excitations of higher multipolarities is
straightforward.
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